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Abstract. The problem of finding the maximum entropy solution which satisfies some 
poorly defined constraints is central to data processing. Hitherto all attempts to solve it 
have been conceptually somewhat incomplete. The present work follows the traditional 
Boltzmann-Gibbs approach to entropy. When data are available the various outcomes 
can be assigned a priori probabilities (or weights) according to how much each of them 
agrees with the measured distribution when errors are taken into account. The reasoning 
yields a statistic S - x z ,  which is a precise expression for the entropy. The maximum S -xz 
solution defines a distribution uniquely. Even in circumstances when there is no information 
apart from those provided by the data, the inferred distribution differs from that given by 
the data mean values and bears a closer resemblance to the underlying population than 
do the raw data. Where additional constraints are present, this maximum entropy procedure 
is more effective in incorporating them than are traditional maximum likelihood techniques. 
S - x ’  maximisation may also be carried out iteratively up to a certain limit. It offers the 
most advantage in situations when one has a thorough understanding of the inherent noise 
behaviour. 

1. Introduction 

Maximum entropy methods have recently been applied to time series (Burg 1975), 
spectral analysis (Fougere 1977, Johnson et a1 1984), speech processing (Johnson and 
Shore 1984), particle dynamics (Engel and Levine 1983), image reconstruction (Skilling 
et al 1979, Burch et a1 1983) and geography (Wilson 1970). The general rationale for 
this technique has been studied in depth (Shore and Johnson 1980, Jaynes 1982). The 
present work seeks a more fundamental approach to problems involving uncertain 
constraints, notably those introduced by experimental data which are inevitably subject 
to errors. 

2. Some methods of distribution determination in cases of insufficient knowledge 

We discuss below three commonly used procedures. 
(i) Maximum likelihood (least squares method). This minimises the statistic 
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where ygata and ui are respectively the mean values and standard deviations of the 
experimental data and y i  is the inferred distribution. Note that for a Gaussian error 
distribution 4* = x 2 ,  and the minimisation procedure is based on the principle of 
maximum likelihood. In the absence of any constraints, the global minimum of d2 
simply gives the mean values of the data as the inferred distribution, i.e. 

y ,  = yyata. 

In more typical situations, such as hypothesis testing, one generally assumes a para- 
metric representation y i  = y i ( a ,  p, . . .) and minimises q5* with respect to a, p, etc. 
Normally the number of parameters involved is much less than the number of data 
values N. 

There are also situations in which 4’ is minimised subject to known constraints. 
For instance if the total value of the population is precisely known to be Y, the 
distribution would be obtained by solving a set of simultaneous equations 

”[ aYi 4 2 + A (  g, Y l  - y ) ]  = 0 

and 
N c y , =  y.  

, = I  

This gives rise to the ‘most likely’ distribution derived from the data subject to the 
condition of a well defined mean (or sum total). 

(ii) The Gull-Daniell-Skilling method. This had been used and discussed in detail 
with reference to image restoration (see Burch et a1 1983, Gull and Daniel1 1978). The 
suggestion is to search for the distribution of maximum entropy which is consistent 
with the available data within experimental errors. A convenient way of measuring 
this ‘consistency’ is the 42 statistic. For a set of N data values, normalised to a total 
X, y ,  = Y, there are N - 1 degrees of freedom. The condition +*/( N - 1) < 1 or 

4 L  < 1 

(where the subscript ‘red’ denotes ‘reduced’) ensures that each data value in the inferred 
distribution cannot, on average, depart from the experimental mean by more than unit 
standard deviation. In practice it is found that the maximum entropy solution always 
occurs on the contour of maximum 4*. Thus, if $I:,,= 1 is used as a constraint, the 
inferred distribution would be obtained by maximising the entropy function S = 
- Z , y ,  logy,. In other words the following system of N + 2  simultaneous linear 
equations needs to be solved: 

and 

where A and p are Lagrange undetermined multipliers and, for simplicity, we dropped 
the details in the summation sign. It is also assumed that N is large, i.e. N = N - 1. 
Clearly such a technique is a reasonable compromise between maximum likelihood 
and maximum entropy. 
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(iii) The minimum cross-entropy. This iterative process is largely due to Kullback 
(1959), also Johnson and Shore (see references cited earlier), and minimises the 
cross-entropy 

s c  = c Y ,  log(y,l m,)  
I 

where m, is a 'prior' distribution which one introduces as a first-order approximation. 
If m, = 1 for all channels i = 1 to N, S ,  = - S  where S is the conventional definition of 
entropy. In such a case, minimising S, would lead to a global entropy maximum for 
S, corresponding to a uniform distribution. 

It is perfectly legitimate to use the available experimental data as the prior input 
(or ansatz), i.e. m, =,fafa.  We will now show that, for such a starting point, and in 
the case of Poisson errors, minimum cross-entropy is not a procedure very different 
from least squares. 

The proof is as follows. Setting m, = y f a f a  and Ay, = y,  -,fat" it is easy to show that 

sc=c ( Y f  + AY,) hidl +AYIlYP) 
I 

where y:' = ,?la. 

expansion o f  the logarithmic function to obtain 
If we now assume that Ay,<<y:"'" it is possible to take only the first term in the 

sc=c (Yf+AYl)AY, lY:  
I 

= c AY1 +e (AYJ21Y:. 
I I 

In this last equation the second term is equal to 242 for Poisson errors (i.e. vf = y:). 
The first term is of little significance in the majority of circumstances, being =O close 
to the d2 minimum. The assertion that S,= 4 2  for Gaussian statistics is therefore 
justified. 

It is very important to note that none of the three current methods described above 
provide a theoretically rigorous framework for utilising the maximum entropy principle 
in the analysis of data from everyday experiments. It was shown that minimum 
cross-entropy is very similar to least squares, which is founded on the principle of 
maximum likelihood. The Gull-Daniell-Skilling routine does bring in entropy. 
However, in order to avoid arriving at the global entropy maximum, these authors 
introduced some sort of 'maximum likelihood' constraints as a measure of misfit with 
data. The use of a rather ad hoc restriction 4* < N - 1 assigns equal weighting to all 
distributions inside this region and zero weighting to those outside it. Data processed 
by the Gull-Daniell-Skilling routine appear smoother than the raw data and they 
retain all the genuine features of the population. This provides a key advantage in 
image restoration. However, it can also be shown that such data generally have less 
statistical agreement (in terms of x') with the underlying population. It follows that 
considerable caution should be exercised in applying the method. 

3. Boltzmann entropy with uncertain constraints 

Let us take one step backward to review the original series of arguments of Boltzmann 
and Gibbs, arguments which ultimately lead to the present day definition of entropy 
as S = -B p log p. 
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Consider a single experiment involving n trials, each having r possible results with 
unknown probabilities p l ,  p , ,  . . . , p , .  Convenient examples include n tosses of a r-sided 
die, and distribution of n photons in r energy channels. For large n, ideally, n, = npi 
( i  = 1 , 2 , .  . . , r )  of the n trials will have result i. The number of possible outcomes (i.e. 
distinguishable experiments each involving n trials) consistent with a distribution 
( n , ,  n ? , .  . . , n,) is given by 

n !  
n , !  n 2 !  . . . n r ! ’  R ( n l ,  n,,. . . , n,) = 

At this point the reader is urged to distinguish carefully between the terms ‘results’, 
‘outcomes’ and ‘distribution’ as used in our present context. The total number of 
outcomes is 

n !  
a o t a ,  = c = r“. 

n , , n *  ..... n ,  n,! n,! . * . n,! 
The chances of a distribution ( n , ,  n 2 , .  . . , n,) turning up in a single experiment, 

assuming that all outcomes have equal a priori probabilities, is 

It is well known that maximising the entropy 

- C n, log n, or s = - c PI log p ,  
> = I  r = l  

is equivalent to maximising P or R,  i.e. selecting the distribution which contains the 
largest number of possible outcomes. 

In the presence of available data concerning the distribution, the assignment of 
equal probabilities is incorrect. For example, an astronomical detection device might 
gather a small number of photons n, in each of the r energy channels, giving rise to 
some idea about n , ,  n 2 , .  . . , n,, and hence some idea about the basic probabilities p I ,  
p , ,  . . . , p ,  associated with the r results. However, due to the finiteness of n, the ni are 
known with errors governed by binomial statistics, which in most circumstances can 
be approximated by Gaussian functions. Thus, the statistical weighting for different 
possible values n, may be determined experimentally as 

where Ai and af are respectively the mean and variance of n, as inferred from the data 
and from knowledge of the experimental conditions. The corresponding statistical 
weighting for preconceived values of the basic probability p ,  is likewise 

Here U, is reduced by a factor n when compared with the (+, in ( 3 )  (i.e. a f = p , / n ) .  
This provides a means of assigning a priori probabilities to the outcomes. Consider 

one single experiment leading to an outcome consistent with the distribution 
( n , ,  n,, . . . , n r ) .  For a sufficiently large number of trials n, one can infer from this 
distribution a single underlying population of probabilities ( p I ,  p , ,  . . . , p r ) ,  where 
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p ,  = n , / n  ( i  = 1,2, . , , , r ) .  What is the likelihood that such a population is derived 
from our observed data as a result of statistical fluctuations? The answer for one trial 
is given by 

f , ( P , ) h ( P 2 )  * .  . f , ( P , ) A P l A P , .  . APr= g l ( n J g z ( n 2 ) .  . . gr(nr)An,An2 * * An, .  

The likelihood of getting this stable population from the data for all n trials is given by 

( g , ( n , ) g , ( n , )  * .  . g , ( n , ) A n , A n , .  . . An,)" = ( g , ( n , ) g 2 ( n , ) .  . . g , ( n , ) ) "  ( 5 )  

where in (5) we have set An,  = 1 ( i  = 1,2 , .  . . , r ) .  This introduces no harm as long as 
we are in the 'continuous' limit An,  << n,. Equation (5) provides the necessary statistical 
weighting of individual outcomes. Using ( 5 )  together with (2), we now obtain the 
probability for the occurrence of a distribution (n,, n2, . . . , n,) in a single experiment: 

(6) W n , ,  n 2 , .  ' .  9 n r ) = f i ( n , ,  n 2 , .  . ., n , ) [ g , ( n , ) g 2 ( n 2 )  * .  . g , (nr ) l" .  

In (6) we have ignored an unimportant constant which enforces the normalisation 

c P(n,, n2, * . . , n,) = 1. 
",,"2. ,", 

The logarithm of (6) is the required data processing entropy Sd which we must 
maximise: 

r 

Sd = log P = log R + n c log(g,(n,)). 
, = I  

We now substitute for R in (1) and g , ( n l )  in (3). Using Stirling's approximation 
log n ! = n log n - n, we deduce 

where we have discarded a constant equal to 

1 
n log n - n + n Clog  i 

((2n)l%). 

Note that Sd can be rewritten as 
r 

s d  = - n, log n) - n x 2  
, = I  

I f  we write n,  = np, and are prepared to remove some more constants, it will be 
sufficiently trivial for the reader to verify that 

r 

Sd = C log pi - x 2  = s - x 2  
1 = 1  

is the correct statistic to maximise, if one wishes to adopt a rigorous approach to entropy. 
We note that the above derivation is based upon the assumption of Gaussian noise. 

I f  errors do not obey the Gaussian distribution, the method is no longer accurate. If  
it is nevertheless attempted, the correct symbol for the statistic should be S - 42. The 
procedure of maximum S - d 2  generates a unique output distribution. Henceforth we 
will denote the operation by a symbol 9. Note that the effect of Y is to transform one 
distribution to another. Y may also be applied subject to additional constraints which 
are independent of the data (see later for more discussion on this point). 
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The treatment can be extended beyond those constraints imposed by the availability 
of data. If there exists any condition 

l ( n 1 ,  n2, .  . . , nr) = 0 

d51= 5 ( C ( n , ) )  

sd = C n, log ni + n log 5[5]. 

subject to a probability distribution functional 

it is straightforward to repeat the foregoing arguments to deduce that 

i 

4. Applications to simulated data 

To assess the performance of maximum entropy we have selected a variety of common 
patterns. For each of these we added noise to them and applied 9'. The resulting 
processed distribution, together with the raw data, are compared with the original 
population. To this end, we assume that the variances due to noise are known. It is 
then possible to calculate the likelihood of the raw and processed data being derived 
from the population. In other words, we compute the coefficient of improvement 

Ax2 x : - x :  
X Z  X: 

ff=-=- (7) 

where x: and xi are respectively the x2 difference between the population and raw 
data, and that between the population and processed data. If a > 0 the processed data 
resemble the population more than the raw data do. 

Table 1 describes the different kinds of population (signal) and noise being 
employed in our analysis. The procedure adopted for generating Poisson noise is as 
follows. We begin with a fixed total number of counts, Y. For the first of these counts 
a random number is generated. This number, together with the particular population 
(signal or pattern) under consideration, determine which channel the count will go. 
The process is then repeated for all remaining events. This creates 'binomial noise' 
which approximately obeys Poisson statistics when the probability of entry for any of 
the channels is small. The noise thus introduced has the following characteristics: (i)  
the error in each channel having a mean of five or more counts is very closely Gaussian; 
(ii) the total number of counts in any data sample is conserved, and equals that of the 
population (i.e. Y ) .  

Concerning the second type of noise mentioned in table 1, namely white noise, it 
is strictly Gaussian in nature. Unlike Poisson noise, the standard errors are input 
parameters (see table 1) independent of the signal strength. Note also that, in the 
presence of such noise, the total number of counts varies from sample to sample. 

The method of data processing is always to apply Y subject to conservation of 
total counts, i.e. to solve the system of equations 

where r is the total number of channels and y' =,fat. determines uniquely the output 
distribution { y j } .  In order to be cautious, the ui used in (8) are inferred directly from 
the data. So in virtually all applications of the maximum entropy principle, the 
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Table 1. 

1. Classification o f  signal populations 
( a )  Straight line with positive slope 

y = 2 x + 3  x = l , 2 ,  . . . ,  10 

(b) Straight line with negative slope 

y =  -x+15  x =  1 , 2 , .  . . , 10 

(c)  Sawtooth pattern 

y = 5  

y = 5 +  ~ O ( X - 5 )  

y = 45 - ~ O ( X  -9) 

x is always an integer 

y = 5  

y = 5 +  lOO(x - 5 )  

(d) Sharp sawtooth 

y =405 - 1 0 0 ( ~ - 9 )  

( e )  Sine function 

y = 7.5 sin(x) + 10 

x in degrees. 

11. Classification of noise 

x = 20,40, .  . . ,360 

(a) Poisson noise. Variance= (1 - p ) n .  Total count is conserved. For more elaboration, see text. 
(b) White Gaussian noise. Variance = u2 where cr is an input parameter. In some cases there may be 

more than one sigma as input. 

normalisation to a total probability is included for completeness. During processing 
the total number of counts Y is inferred from the population. For samples containing 
Poisson noise this poses no additional constraint. However, when white noise is present 
the total number of counts is not conserved, and the condition 

2 y , = Y  
, = I  

( 9 )  

where Y is the population total, does serve as additional knowledge which will drive 
the processed data closer to the population. Thus, application of (9) will, in some 
cases, provide a means of assessing the potential applicability of Y as an estimator 
which can incorporate constraints other than those imposed by the data. 

We discuss the results. For each basic population (signal or pattern) we generated 
many noisy data samples in order to obtain a frequency distribution for the coefficient 
of improvement a in (7).  Cases 1-4 of table 2 show these distributions for samples 
containing Poisson noise. 

The peaks of the frequency curves lie in the region a > 0, meaning that there is a 
definite improvement. The amount in each case is too small (a few per cent) to warrant 
practical applications of the technique. However, the fact that cy > 0 does provide 
incentive for further studies of 9’ in order to identify domains where more substantial 
enhancements of the underlying structures are present (see later in this section). 
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Table 2. Signals contaminated with noises are processed and parameters for the statistical 
distributions of the coefficient of improvement (for definition, see text) are tabulated. 
Unless otherwise stated in the ‘description’ column, the method employed in data processing 
is S-x ’ .  

Case Description (reference 
number to table 1) 

Number 
of data a (YO) a ( O h )  a ( % )  a ( X )  
samples mean mode max min 

6 

7 

8 

9 

Class (a) signal and class (a )  noise 
Class (b)  signal and class (a) noise 
Class (c) signal and class (a) noise 
Class (e) signal and class (a) noise 
Class (d) signal and class (a )  plus class (b) 
noise 
Class (e)  signal and class (a) noise plus 15 
iterations of S - x 2  
Class (d)  signal and class (a)  plus class (b) 
noise. Here (I = Ax2/x2 where Ax2 is the x 2  
difference between the least squares and S - 
x 2  processed data 
Class (c) signal and class (a )  plus class (b) 
noise. Three-point smoothing technique 
Class (d)  signal and class (a )  plus class (b)  
noise. Three-point smoothing technique 

343 
340 
327 
268 
300 

194 

368 

356 

287 - 

1.7 1.3 3.1 -0.15 
1.0 1.2 2.65 -0.8 
0.4 -0.3 1.95 -1.32 
0.70 1.0 1.72 -0.43 
8.10 2.3 40 -0.4 

9.1 12.6 23.1 -8.0 

1.26 0.3 5.1 -1.10 

0.7 1.32 -0.37 1.6 

12.5 -7.15 0.0 -38.0 

Turning to samples containing white noise as well as Poisson noise, case 5 of table 
2 displays the frequency distribution for a. Evidently there is more improvement than 
previous cases and the reason is because the normalisation of total counts to a value 
which equals that of the population serves as additional constraint. 

Case 6 describes situations where we applied Y more than once. During each 
iteration the errors ci are inferred from the previous distribution. In other words the 
processed data from one  iteration are treated as raw data for the next. Case 6 of table 
2 shows the frequency curves for a in some typical situations. The fact that peak 
values of a now reach approximately 1O0/o is a significant development and suggests 
that the method has potential for practical applications. 

However, a word of caution is needed here. If the algorithm is repeated indefinitely, 
there will always exist an  ‘equilibrium point’ beyond which a turns negative and 
remains so; in other words the processed data become progressively worse. The optimal 
or critical ‘index’ may be defined as the value n such that Y” provides the greatest 
improvement. This index depends on three main factors: ( i )  form of the underlying 
population, ( i i )  type of noise and (iii) how well the noise is estimated. For instance, 
the sawtooth pattern in case 3 ,  when it carries Poisson noise, gives rise to little 
improvement even at the first trial n = 1 (as is evident from table 2 ) .  It was found that 
repeated applications of Y did more harm than good, so the critical index is n = 1. 
We found that the same situation becomes substantially more favourable if white noise 
is introduced in addition to Poisson noise, and  if we assume exact knowledge of the 
noise. The difficulty with Poisson noise alone is that such an assumption cannot be 
made, since noise and  signal are not independent. It is therefore clear that certain 
patterns contaminated only with Poisson noise may yield a low critical index n when 
processed with Y. Once the signal is estimated wrongly, error for the next iteration 
will also be estimated wrongly, so the sequence diverges away from the truth. 
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5. Comparison of maximum entropy with other existing methods 

( a )  Least squares. For Poisson noise, which conserves the total number of photons 
in the data, the procedure of minimum x 2  subject to the constraint C y ,  = Y gives 
nothing but the global xz minimum (x'= 0) during which y ,  = yfd".  If white noise is 
introduced, the constraint X, y ,  = Y, where Y equals the population total, does serve 
as useful additional knowledge which should improve the resemblance between data 
and population. Case 7 of table 2 gives the frequency distribution of a = Ax2/x2 where 
now Axz is the difference between the x 2  of the least squares processed data, and that 
of the Y operator processed data. It is apparent from the figure that a is once again 
positive, meaning that Y is a better technique for incorporating constraints other than 
those already imposed by the data. 

( b )  Gull-Daniell-Skilling method. Comparison of Y with this method is inap- 
propriate. As noted earlier, this method consistently drives the processed data away 
from the population. Clearly its merits have to be assessed in a very different way. 

( c )  Three-point smoothing. Simple smoothing techniques such as 

y ,  + y :  = ay,-, + t Y l  +ay,+ ,  

give substantial improvements for mildly varying patterns (case 8) .  For patterns 
containing high-frequency components, the method fails completely (case 9). However, 
the Y operator is capable of providing improvements even under such circumstances 
(case 5) .  

6. Conclusion 

The operator has potential merits in data processing. Even in situations when there 
is completely no information apart from that provided by the measurements (i.e. signals 
and errors), the method yields a distribution which differs from that given by the data 
mean values. I t  was shown that, for a variety of circumstances, the processed distribu- 
tion resembles the underlying population more than the raw data do. Repeated use 
of Y yields progressively better results, up to a certain limit. Precautions must be 
taken not to exceed a critical number of applications. It was also shown that the 
method offers an effective way of incorporating additional constraints (e.g. constraints 
other than those provided by the data and its errors). The method is most useful when 
a good knowledge of the data noise level is available. 
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